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Abstract—Advanced Sleep Modes (ASMs) correspond to a
gradual deactivation of the Base Station (BS)’s components
in order to reduce its Energy Consumption (EC). Different
levels of Sleep Modes (SMs) can be considered according to the
transition time (deactivation and activation durations) of each
component. We propose in this paper a management solution
for ASMs based on Q-learning approach. The target is to
find the optimal durations for each SM level according to the
requirements of the network operator in terms of EC reduction
and delay constraints. The proposed solution shows that even
with a high constraint on the delay, we can achieve high energy
savings (almost 57% of EC reduction) without inducing any
impact on the delay. When the delay constraint is relaxed, we
can achieve up to almost 90% of energy savings.

Index Terms—Advanced Sleep Modes, Energy Consumption,
Q-learning.

I. INTRODUCTION

Motivated by both economic and environmental concerns,
Energy Consumption (EC) in cellular networks has sparked
wide interest in academia and industry during the last decade
and has become one of the key pillars in the design of
future 5G networks [1]. On the one hand, reducing the EC
consumption of the networks enables to reduce the carbon
emissions in the atmosphere, knowing that Information and
Communication Technologies (ICT) systems are responsible
for 2% of the world’s CO5 emissions [2]. On the other hand,
the EC reduction will lead to lower Operational Expenditures
(OPEX) for the network operators. These motivations led to
the creation of a research direction named “Green Radio”
dedicated to solutions that enable to build future wireless
architectures ensuring better coverage and enhanced Energy
Efficiency (EE) [3], defined as the amount of energy transmit-
ted per Joule of consumed energy [4].

Since the Base Stations (BS) are the main energy consumers
in the wireless network with around 80% of the total EC [5],
many research studies focused on finding effective solutions
to enhance their EE. In this context, some works considered
reducing the BS transmit power, others focused on the hard-
ware efficiency while many others considered the opportunity
of deactivating the BSs, i.e, putting them into Sleep Mode
(SM), whenever it is possible [6].
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We focus in this work on the technique of SMs, and
more precisely on a feature called Advanced Sleep Modes
(ASMs). It corresponds to a gradual deactivation of the BS’s
components according to the time each of them needs to
deactivate then reactivate again (transition time). Based on this
time, we can define different levels of SMs having different
characteristics, such as duration and power consumption [7].
It has been shown in a previous work [8] that this technique
is very efficient in terms of EC since it can reduce up to 90%
at very low loads where the ASMs are more applicable.

However, this technique induces an increase of the latency
due to the waiting time of a user requesting a service while
the BS is in SM. Therefore, a smart management solution
is needed in order to find the optimal tradeoff between EC
and delay. This solution should enable the network operator
to orchestrate the ASMs according to its needs and to the
different requirements of 5G use cases. For instance, if we
are facing a delay-critical use case, such as Utra-reliable Low
Latency Communications (URLLC) in 5G [9], there is a high
constraint on latency which has to be in the order of Ims. In
this case, we should avoid ASMs inducing large delays. In
other delay-tolerant use cases, the network operator has the
option to prioritize either the energy reduction or the delay.

The main objective is to build a self tuned network which
can adapt the use of the different ASM levels according to
a cost function chosen by the network operator. This energy-
saving mechanism can be viewed as a Green Self-organized
Networking (SON) [10] function to be integrated into the
network in addition to the other existing SON functions, such
as those ensuring coverage and mobility.

In this paper we propose a Reinforcement Learning (RL)
solution with a Q-Learning implementation in order to derive
a controller that efficiently activates ASMs according to the
desired utility. We focus on a distributed architecture where
each BS uses solely its local information in order to learn the
energy-saving policy. To the best of our knowledge, this is a
first attempt to define an intelligent control system enabling
to choose between different SM levels having different power
values and different transition times.

The remainder of this paper is as follows: Section II intro-
duces the concept of ASMs and describes the implementation



proposal. Section III presents our Q-learning approach adapted
to the ASM problem. Section IV presents the numerical results
and Section V concludes the paper.

II. SYSTEM DESCRIPTION
A. Advanced Sleep Modes

ASMs correspond to an energy-efficient feature which
consists in deactivating the different components of the BS
gradually. Therefore, different types of sleep levels can be
considered according to the transition time of each component,
i.e., the time needed to shut down the component then wake
it up again. For instance, the Power Amplifier (PA) needs
only one OFDM symbol (71us) for this transition time while
other components like the digital baseband need more time [7].
This led to the categorisation of the different components of
the BS. Each category (SM level) comprises the components
having the same transition time. Going from one level of
SM to a deeper one allows more energy reduction since we
deactivate more hardware; the BS needs however more time to
reactivate them to serve the users. We consider four levels of
SMs as introduced in [7]. Table II summarizes their different
characteristics:

TABLE I: Advanced Sleep Modes characteristics

Sleep | Deactivation Minimum Activation
level duration sleep duration | duration
SM: 35.5 us 71 ps 35.5 us
SM- 0.5 ms 1 ms 0.5 ms
SM; 5 ms 10 ms 5 ms
SM4 05s 1s 05s

Moreover, the BS has to send periodically signaling bursts.
It has been agreed in 3GPP [11] that this peridicity can be
configurable in 5G networks and can be set to any value among
[5, 10, 20, 40, 80, 160 ms]. With these values of signaling
periodicities, the deepest SM, i.e., SMy, cannot be used. Then,
we limit our interest in this work to the first three levels.

B. ASM implementation proposal

We proposed in [8] to implement the ASM in a gradual
fashion. In other words, if the BS is totally idle (not serving
any user) we put it into SM;, then SM, and finally SM3 as
shown in Figure 1.

Whenever a user requests a service while the BS is in SM,
we buffer it and trigger the activation of the BS. This can
induce high impact on the latency since the considered user
has to wait while the BS reactivates. This waiting time can
reach 5ms if the BS is in SM3, which can be very frequent
in very low loads if we use the gradual approach described
above. This may be critical if we consider delay-intolerant
5G use cases such as URLLC. So the challenge in this case is
to find other solutions enabling to reduce the EC as much as
possible using the ASMs without inducing any impact on the
latency. For other use cases, for instance enhanced Mobile
BroadBand (eMBB), the network operator can define another
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Fig. 1: Example of implementation strategy of ASMs

policy, such as choosing to reduce the EC without having
any constraint on the delay. Therefore, our target is to design
a network orchestrator enbaling to manage these ASMs in an
optimal manner satisfying the network operator’s needs.

In order to be able to save energy without inducing any
delay, we propose the following implementation strategy: after
a departure of a user and if the BS becomes totally idle, we put
it into the most energy saving SM level, i.e., SM3. We have to
choose the number of times we can repeat SM3 before going
to the next SM level. After the time allowed for SM3 elapses,
we switch the BS into SM; and similarly the number of times
SM,, will be repeated has to be fixed at the end of SM3. After
SMs is finished, we have to decide how long we can stay in
SM; before waking up totally. If there is a high constraint on
the delay, our orchestrator has to anticipate the wake up of the
BS, assuming that it will have less energy savings. Whereas, if
the only constraint is on the EC, the orchestrator would prefer
to stay in the depeest SM.

The following section introduces the machine learning ap-
proach that we use to solve this problem.

III. Q-LEARNING PROPOSAL FOR DYNAMIC
ORCHESTRATION OF ASMS

A. Reinforcement learning approach

RL is a machine learning approach that aims to achieve an
optimal goal by interacting with an environment. It consists on
learning how to map situations to actions in order to maximize
a numerical outcome [12]. This outcome can have a negative
value, in this case it is considered as a cost or penalty and it can
be positive, it is seen in this case as a reward. It indicates to the
decision maker entity, called also agent or controller, whether
the actions he chose are appropriate for the environment or
should be avoided in the future. The environment is defined
as everything being exterior to the agent. As the environment
evolves in time, the agent has to adapt itself and to learn it
continously.

By interacting with the environment, the agent acquires
some knowledge which he can exploit when making his future



decisions. He can also choose to explore new actions in order
to discover the optimal solution and be able to achieve better
rewards in the future. Choosing the exploitation approach
is the best thing to do so as to maximize the reward in the
following step but the exploration has the perk of producing
the best global reward in the long run. Hence, the optimal
approach is to find a good tradeoff between the exploration
and the exploitation strategies. One common solution to tackle
this problem is the e-greedy algorithm defined as follows:

A* with probability 1 - €czp
Next action =

Random action with probability €.y

with A* the best action known so far and €., € [0,1] defines
the probability of exploration.

Several methods exist in the literature that enable to solve
a RL problem. They can be classified into two categories:
model-based approaches such as Dynamic Programming and
Monte Carlo and model-free approaches such as Temporal-
Difference (TD) methods [12]. Two common examples of TD
techniques are SARSA and Q-learning [13].

The following section describes our approach for ASM
management based on Q-learning.

B. Q-learning proposal

As an application to the ASM problem, TD is a suitable
approach since we do not have an explicit model of our
environment (for example the transition probabilities between
the SMs levels are not known). In this work, we use the
Q-learning algorithm which is a control method where the
agent can behave randomly without any specific policy.

We consider that the decisions are taken whenever the BS
switches from an active mode to an idle one and whenever
the sleep period for a certain SM level elapses. Let n; denote
the number of times the BS can repeat SM;, for i € {1,2,3}.
We define an episode as the time between the departure of the
last user served by the BS and the arrival of the next one. The
beginning of an episode represents the decision point for the
agent to choose ng, the number of times we can repeat SMs.
Similarly, after spending n3 times in SM3, the BS has to take
a decision for the next step: choose ny and the same for n;
to be chosen after the time allowed of SMs elapses. So, the
actions are taken at transition points between SM levels. The
type of transition is defined by the policy, namely (ns, ng,n1),
and the actions consist of the number of times the next SM is
repeated. Note that according to the policy defined above, if
the system is in a SM;, it is repeated a number of times n;.
Hence, the decision times for this problem are not fixed but
they are flexible depending on the users’ and SMs’ dynamics
in the network. Let us denote by ?o the time of departure of
the last user served by the BS. So the set of decision times
for our problem can be written as follows:

T = {to, to+nsTs, to+nsT3+nTs, to+nsTs+noTo+n 1 T1 }.

where T; denotes the minimum duration for SM;. At time
to + n3Ts + noTs +nqTh, the only possible action for the BS
is to wake up. It corresponds to the terminal state in which the
BS will remain until the arrival of the next user. The departure
of that user, if no one else is being served by the BS by that
time, corresponds to the start of the next episode. If a user
arrives while the BS is in SM, the activation of the BS is
triggered and the user has to wait.

The state space S comprises the states of the BS, i.e., active
(serving a user), in sleep mode (SM;, SMy or SM3), or idle
(not transmitting anything but it is still activated).

S = {active, idle, SMl, SMQ, SMs}

The action space contains the possible decisions to be made
at each decision point. The action is to choose how many times
the BS can stay in the following SM level. We denote N; the
set of possible values that n; can take, for ¢ € {1,2,3}.

So, the action space is:

AS = {NS;N27N1}'

At each decision point, the agent chooses an action then
stores a quality-value linking the state s € S to the chosen
action a € A,. This quality-value, called Q-value, is initially
taken as zero. The actions of the agent consist of selecting
the number of times to repeat a SM level. This choice is
based on the exploration-exploitation algorithm presented in
Eq. (1). This means that the agent will choose a SM level
having the highest Q-value with a probability 1 - €.;;, and a
random level with probability e..,. Whenever the agent visits
the state s and performs action a, it receives a reward R and
the corresponding Q-value, Q(s,a) is updated following this
update-rule:

Q(s,a) < Q(s,a) + a[R + ymax,Q(s',a") — Q(s,a)] (2)

where:

e « is the learning rate. It shows how the algorithm will
adapt to a new reward value.

e v is the discount factor. It reflects the weight given to
future rewards.

o s’ is the state of the system after having performed action
a in state s.

Our target is to find the best policy, i.e., the optimal triplet
(n3, ng,n), which maximizes the reward R. We define R for
a given episode as the weighted sum of the energy gain Egq;1,
and the added delay D, both resulting from the sleep strategy
during that episode. Hence, R can be written as follows:

R=—€eD+ (1 —€)Egqin 3)
where € is a normalized weight (¢ € [0,1]) that denotes the
importance given to the two factors D and Fyq;,,. A small €
means that the EC reduction is prioritized over the delay and
vice versa.



IV. NUMERICAL ANALYSIS
A. Simulator description

To evaluate the performance of the proposed approach, we
developped an event-based simulator where an event corre-
sponds to an arrival or a departure of a user in the network.
We consider a single BS with one sector and a FTP service
where the users request to download a file of exponential size
with mean 4 Mbits. The end of the service correspond to
their departure from the BS. The different characteristics of
the simulator are given in Table II.

TABLE II: Simulator characteristics

Network parameters

Antenna height 30 m
Bandwidth 20MHz
Scheduling type Round Robin

Channel characteristics
Thermal noise -174 dBm/Hz

Path loss (d in km)

128.1 + 37.6 log,,(d) dB

Shadowing

Log-normal (6dB)

Traffic characteristics

Users’ arrivals Log-normal with mean A

and variance v = %
FTP

4 Mbits

Service type

Average file size

We consider in this study a BS having a very low load.
We consider a mean arrival rate A = 1 user/s’km? which
translates into a load of around 1%, i.e., 1% of the time during
the simulation the BS is serving users and it is idle for the
remaining time. It is in very low load that the ASMs can
significantly impact EC and delay.

The power figures for the different states of the BS with 1
sector are given in Table III. These power values are deduced
using IMEC power model tool [14].

TABLE III: Power consumption of 2x2 MIMO BS (1 sector)
in different states.
Radiated Power: 46 dBm, Bandwidth: 20 MHz

Active
250 W

Idle
109 W

SM;
523 W

SM>
143 W

SM;3
951 W

The Q-learning parameters are taken as follows: v = 0.1;
€exp = 0.1 and o = *—; where N, , is the number of visits

of state-action pair (s, a).

We define the sets of possible actions as:
N3 = {100, 500, 700, 1000, 1500, 2000},
Ny = {1000, 2000, 3000, 5000, 10000, 20000},
N; = {10000, 20000, 50000, 100000, 150000, 200000}.

The rational behind the choice of these actions sets is the
following: the number of consecutive SMs of a given level

should span the time interval covered by the SM of the lower
level. These values are taken in such a way that we can get
different policies according to the defined reward function
and in order to have a finite set of possible actions.

B. Convergence analysis

At each decision point, we compute the maximum variation
of the quality value Q(s,a) for all the state-action pairs
(s,a). This variation tends to zero for a sufficient period
of learning and this defines our convergence criteria. As
an example, we take the case of a reward function with
e = 0.8. Figure 2 shows the convergence behaviour of the
learning phase in this configuration. We can observe that for
sufficiently high number of iterations (in the order of 10%),
the maximum variation is nearly zero for all state-action pairs.

Once the convergence is assured, we can exploit the results
of the learning phase in order to quantify the outcome of the
selected policy.
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Fig. 2: Convergence evolution

C. Numerical results

The proposed approach is tested for different values of e
defining different tradeoffs between the EC reduction and the
delay. This allows to learn different policies as presented in
Table IV.

TABLE IV: Policies

Policy (n3,n2,n1)
erx0 (2000, 20000, 200000)
e=0.2 (1500, 20000, 200000)
e=0.5 (1000, 20000, 200000)
e=0.8 (1000, 3000, 200000)
erx1 (700, 1000, 200000)

After the learning phase, we exploit the derived policy and
assess its performance in terms of EC reduction and delay
increase. Our baseline scenario is when we do not use any
SM.



Figure 3 presents the repartition of the different states of
the BS as a function of . We can see that for ¢ ~ 0 (the
priority is to maximize the energy gain), SMs is used almost
all the time (98% of time). Whereas, when ¢ ~ 1 (we have a
high constraint on the delay), SM3 is less used (50% of time)
and more time is given to SMy then SM; before waking up
to anticipate the arrival of a user. In between, as e increases
we shift gradually from SM3 to the two other levels.
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Fig. 3: Hystograms for the different SM policies as a
function of €
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Figure 4 shows both the energy gain and the delay increase
resulting from each selected policy.
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Fig. 4: Performance assessment of the selected policies
during the exploitation phase

We can see that the energy gain and the delay depend on the
chosen ¢, i.e., the reward function. The lower ¢, the higher the
energy gain because deeper SMs are allowed to be repeated
more times. This is translated also into a higher increase of the
delay. Thus, the network operator has to choose carefully this
parameter in order to satisfy the requirements of the different
5G use cases. For instance, in the case of URLLC, ¢ should
be fixed to 1 which will prevent having an increase of latency
but it is still energy-efficient since we can reduce up to almost
57% of the EC.

V. CONCLUSION

We proposed in this paper a management solution based on
Q-learning approach enabling to orchestrate the ASM levels
according to the requirements of the network operator in terms
of EC reduction and delay. With this proposed approach, the
control agent can decide how many times the BS can repeat
each ASM level depending on the defined utility. Our results
show that this solution is very efficient: when we have a high
constraint on the delay, the agent learns the optimal policy
enabling to have high energy gain without increasing the delay.
In this case, we can reduce the EC by 57%. Whereas, if no
constraint is imposed on the delay, the BS stays in the deepest
SM until the arrival of a user which allows energy savings of
almost 90%. For the cases in between, a tradeoff is found
between the EC reduction and the delay increase based on the
reward function.

As the BS has to send periodically signaling bursts, the
ASM implementation would be impacted by this periodicity
which can prevent from going into some levels of ASMs. It is
interesting to extend this work to derive the optimal policies
that can be used with the different signaling periodicities
allowed in 5G networks.
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